
RESEARCH ARTICLE

Detection of slow port scans in flow-based

network traffic

Markus RingID
1*, Dieter Landes1, Andreas Hotho2

1 Faculty of Electrical Engineering and Informatics, Coburg University of Applied Sciences and Arts, 96450

Coburg, Germany, 2 Data Mining and Information Retrieval Group, University of Würzburg, 97074 Würzburg,

Germany

* markus.ring@hs-coburg.de

Abstract

Frequently, port scans are early indicators of more serious attacks. Unfortunately, the detec-

tion of slow port scans in company networks is challenging due to the massive amount of

network data. This paper proposes an innovative approach for preprocessing flow-based

data which is specifically tailored to the detection of slow port scans. The preprocessing

chain generates new objects based on flow-based data aggregated over time windows

while taking domain knowledge as well as additional knowledge about the network structure

into account. The computed objects are used as input for the further analysis. Based on

these objects, we propose two different approaches for detection of slow port scans. One

approach is unsupervised and uses sequential hypothesis testing whereas the other

approach is supervised and uses classification algorithms. We compare both approaches

with existing port scan detection algorithms on the flow-based CIDDS-001 data set. Experi-

ments indicate that the proposed approaches achieve better detection rates and exhibit less

false alarms than similar algorithms.

Introduction

Company data are a valuable asset which must be protected against unauthorized access and

manipulation [1]. Therefore, companies use various security mechanisms like firewalls or

intrusion detection sytems (IDS) to protect their data [2]. Most of these operational security

systems are, however, signature-based and cannot detect or prevent novel attack scenarios

really well.

This work aims to support security experts and security systems in detecting novel and

more serious attacks on the basis of data which are easy to obtain, while, at the same time,

respecting the privacy of the user. To reach this goal, a flexible method is needed which is able

to identify new attacks by utilizing and finally generalizing known behaviour. We take advan-

tage of the fact that attack scenarios often follow a general sequence of phases. Skoudis and

Liston [3] provide a widely known definition of five attack phases, namely Reconnaissance,
Scanning, Gaining Access, Maintaining Access and Covering Tracks. In the Scanning phase,

attackers often use port scans to identify hosts or networks which they want to infiltrate [4].

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ring M, Landes D, Hotho A (2018)

Detection of slow port scans in flow-based network

traffic. PLoS ONE 13(9): e0204507. https://doi.org/

10.1371/journal.pone.0204507

Editor: Yong Deng, Southwest University, CHINA

Received: March 1, 2018

Accepted: June 5, 2018

Published: September 25, 2018

Copyright: © 2018 Ring et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data is available

at: www.hs-coburg.de/cidds.

Funding: This work is funded by the Bavarian

Ministry for Economic affairs through the WISENT

project (grant no. IUK 452/002) and the BayWISS

Consortium Digitization. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0002-6348-5717
https://doi.org/10.1371/journal.pone.0204507
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204507&domain=pdf&date_stamp=2018-09-25
https://doi.org/10.1371/journal.pone.0204507
https://doi.org/10.1371/journal.pone.0204507
http://creativecommons.org/licenses/by/4.0/
http://www.hs-coburg.de/cidds

Normally, port scans trigger huge amounts of requests to different ports or IP Addresses

within a short period of time. Such port scans can be easily detected by simple mechanisms

like counting the number of requested ports for each Source IP Address. However, serious

attackers scan their targets slowly in order to avoid suspicion. Slow means in this context that

an attacker does not send probe packets permanently. Rather, attackers send probe packets to

a host for example only every 15 seconds or every 5 minutes. Consequently, detection of slow

port scans is more challenging. Due to the fact that scanning is an essential phase within a typi-

cal attack scenario, it is of upmost importance to detect slow port scans in order to identify

new attacks. Detection of slow port scans must be taken into account for intrusion and insider

threat detection.

This paper tackles the problem of detecting slow port scans in flow-based network data.

Port scans as such do not cause any damage, but often constitute a forerunner of attacks that

might cause serious harm. Thus, our work contributes to detecting attacks early, namely

already in an initial stage during the Scanning phase.
Network flows provide meta information about network connections between endpoint

devices. Information in flow-based data is significantly condensed in comparison to packet-

based data. Hence, the detection of slow port scans is more complicated, but the amount of

data to be analysed and, consequently, privacy concerns are reduced. Due to these advantages,

we focus on flow-based data and propose two different approaches for the detection of (slow)

port scans. The main idea of both approaches is to overcome the shortcomings of flow-based

data by exploiting knowledge about the company network and characteristics of port scans in

flow-based data. To that end, we propose an innovative preprocessing chain which is specifi-

cally tailored to detect slow port scans. We use knowledge about the company network to iden-

tify internal hosts. A flow describes only one specific connection whereas a port scan causes

many connections. To overcome this issue, we collect flows over time windows. The collected

flows are used to calculate new objects—which we call network events—with attributes like

number of flows directed to non-existing internal IP Addresses. These network events are the

basis of our two new port scan detection approaches. One approach is unsupervised and uses

sequential hypothesis testing whereas the other approach is supervised and uses classification

algorithms. Supervised approaches often achieve better results. Yet, in contrast to unsuper-

vised approaches, they need labelled training data which are often hard to obtain. To general-

ize both approaches, we train and optimize them only on a subset of the flow-based data.

Then, we apply these approaches to the remaining flow-based data to demonstrate how they

perform on new data.

The paper’s main contribution is an innovative preprocessing chain which results in the

generation of network events with attributes tailored for port scan detection. Further, we pres-

ent two approaches for detecting (slow) port scans in flow-based network data.

The rest of the paper is organized as follows: the next section reviews related work on flow-

based intrusion detection and on port scan detection algorithms. Then, the problem setting

and the underlying flow-based data are discussed in more detail. Next, the preprocessing chain

as well as approaches for detecting slow port scans are pesented. Furthermore, an experimental

evaluation of both approaches is provided. The last section summarizes the paper and provides

an outlook to future work.

Related work

This work targets the detection of slow port scans in flow-based network traffic. Therefore, we

provide an overview of flow-based intrusion detection before we review related work on port

scan detection.

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 2 / 18

https://doi.org/10.1371/journal.pone.0204507

Flow-based intrusion detection

Bhuyan et al. [5] provide an extensive review of packet- and flow-based anomaly detection

methods. The authors categorize existing methods with respect to their technologies and cate-

gorize different attack types. In a more recent survey of data mining and machine learning for

cyber security, Buczak and Guven [6] comprehensively review data mining methods for cyber

security and provide an overview of well-known network-based data sets. Sommer and Paxson

[7] identified various challenges (e.g. the lack of training data sets or the high cost of false

alarms) for the use of anomaly-based network intrusion detection methods.

Packet- and flow-based network data consists of continuous and categorical attributes.

Since categorical attributes have no natural order within their value ranges, standard similarity

measures like the cosine similarity can not be used. The omnipresent IP Addresses in flow-

based data are an example of categorical attributes. Many approaches deal with the similarity

calculation of IP Addresses, e.g. Ring et al. [8] learned similarities between IP Addresses by

extracting context information from flow-based network data. Weller-Fahy et al. [9] propose

an overview of the used similarity measures of anomaly-based network intrusion detection sys-

tems. This work circumvents calculating similarities between categorical values by creating

new objects (network events) with exclusively continuous attributes.

AlEroud and Karabatis [10] present a flow-based intrusion detection system that utilizes

contextual information through semantic link networks (SLN). The authors extract time, loca-

tion and other contextual information from flows to generate semantic links between alerts.

Nychis et al. [11] propose an entropy-based anomaly detection approach which divides the

flow-based data stream into five minute intervals and calculates various distributions for dif-

ferent attributes. Then, entropy values are calculated based on these distributions and used for

anomaly detection. BClus [12] is an anomaly-based botnet detection method for flow-based

data. It divides the flow-based data stream in time windows and aggregates the flows with

respect to their Source IP Addresses in each time window. Then, new attributes are calculated

for each aggregation and subjected to machine learning methods for botnet detection. While

we aggreagte flow-based data streams like BClus [12], we compute new objects with adjusted

attributes and focus on the detection of slow port scans rather than botnet detection as BClus

does.

Port scan detection

Over the years, considerable effort has been spent on network-based port scan detection algo-

rithms. Network-based port scan detection algorithms may be divided into packet-based (cate-
gory I) and flow-based approaches (category II).

Bhuyan et al. [13] provide an overview of port scanning and methodologies to the detection

of port scans. The authors distinguish single source and distributed port scans and discuss a

large number of port scan detection methods of both categories in detail. They summarize that

most approaches are packet-based and that the lack of publicly available data sets complicates

the evaluation and comparison of the different approaches [13]. Bou-Harb et al. [14] give a

more recent review of port scanning. In particular, the authors categorize network scans

according to their nature, strategy, and approach. Further, the authors explain different scan-

ning methods and present existing methods for distributed port scan detection.

Packet-based port scan detection (category I). Staniford et al. [15] present a packet-

based detection algorithm for stealthy port scans from category I. The authors calculate an

anomaly score for each packet which depends on the likelihood of occurrence for the IP
Addresses and Ports. Anomalous packets are forwarded to SPICE (Stealthy Probing and Intru-

sion Correlation Engine). SPICE stores the packets as nodes in a correlation graph and uses

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 3 / 18

https://doi.org/10.1371/journal.pone.0204507

thresholds to identify scanners. Threshold Random Walk (TRW) [16] is another packet-based

port scan detection algorithm. TRW analyzes TCP packets only based on the assumption that

port scanners have more failed connections than legitimate clients. TCP packets are distin-

guished as successful or failed based on TCP flags. TRW uses sequential hypothesis testing and

defines two hypotheses H0 (the Source IP Address is normal) and H1 (the Source IP Address is a

scanner). For each Source IP Address an accumulated ratio is updated after each arriving packet

and checked against two thresholds. If the accumlated ratio exceeds any of the two thresholds,

one hypotheses is accepted and the Source IP Address is marked as normal or scanner. In a

nutshell, the approaches of Staniford et al. [15] and Jung et al. [16] rely on packet-based data

whereas our approach focuses on flow-based network traffic.

Flow-based port scan detection (category II). Sridharan et al. [17] transferred sequen-

tial hypothesis testing to flow-based data and present a representative of category II. The

authors do not use a definition of successful or failed connections. Instead, their system

TAPS collects the flow-based data over time windows and calculates for each Source IP
Address the ratio of connected Destination IP Addresses and Destination Ports. The authors

assume that port scanners have a very high or very low ratio in contrast to normal clients. If

the ratio exceeds any of the two predefined thresholds, the Source IP Address is marked as

normal or scanner. Further, Sridharan et al. [17] transferred the packet-based approach TRW
to flow-based data and denominate it as TRW-SYN. TRW-SYN processes each flow separately

and marks them as successful or failed based on the set TCP flags and number of packets.

Zhang and Fang [18] propose TFDS, a port scan detection approach which is based on unidi-

rectional flow-based data. TFDS is based on the observation that network scanners cause

many small-sized flows and the flow size of normal traffic is larger and more variable in size.

Therefore, TFDS collects the flow-based data over time windows and analyses the size and

variation of the flows for each Source IP Address. For identifying port scanners, TFDS uses

sequential hypothesis testing as TAPS and TRW do. The authors compared their method

TFDS to TAPS and outperformed TAPS. Still, the high false positive rate is a weakness of

both, TAPS and TFDS.

Gates et al. [19] use a Bayesian regression model to identify network scans at an Internet

Service Provider (ISP) environment. Specifically, the authors collect flows for each Source IP
Address over time periods and calculate objects with additional attributes as input for their

model. Gates et al. [19] continue collecting flows until no further flow from the respective

Source IP Address is received within a 5 minute time window. This may have been a valid

assumption for ISP environments in the past. Nowadays, however, the permanent synchroni-

sation of different services (e-mail clients, network drives, etc.) invalidates 5 minute time win-

dows as appropriate stop criterion for company networks. Webster et al. [20] extended the list

of calculated attributes of Gates et al. [19] and evaluated the performance of different classifica-

tion algorithms for network scan detection in a university network.

Our approach does not process each flow separately like TRW-SYN [17], but resembles the

approach of Gates et al. [19] in that it collects flows over times windows and calculates new

objects with specific attributes. In contrast to the work of Gates et al. [19] and Webster et al.

[20], our work utilizes knowledge about the company network. Thus, more specific attributes

(e.g. number of accesses to non-existing IP Addresses) can be calculated which consider addi-

tional knowledge about hosts and network structures.

Problem setting

Since this work is particularly directed towards identifying slow port scans in flow-based data,

we first analyse port scans and flow-based data in more detail.

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0204507

Analysis of port scans

In active port scanning, an attacker identifies network hosts and services by transmitting

probe packets. Many different port scan techniques exist and the behaviour of attackers and

victims varies for these techniques. In the following, we focus on the main characteristics of

port scan techniques. Port scanning can be broadly divided into horizontal and vertical scan-

ning. Vertical scans are used to spot open ports of a single host while the more common hori-

zontal scans are used to identify hosts for a specific open port [15].

TCP. The most common type of TCP port scanning is SYN-Scan. Here, the attacker

sends the initial SYN request of the 3-Way-Handshake to the victim. Then, the victim sends a

SYN-ACK response to the attacker if the port is open, or a RST response if the port is closed. In

order to prevent log entries on the victim host, the attacker does normally not complete the

3-Way-Handshake for open ports. Therefore, this type of scan is often called stealthy SYN-Scan
[15]. FIN-Scans are another TCP-Scan technique which sends FIN messages instead of SYN
messages for bypassing firewall rules. If such a request is directed to a closed port, the victim

sends a RST response. If an open port is addressed, the victim renders no response. Other

TCP-Scan techniques are e.g. ACK-Scans or XMAS-Scans which send different combinations

of TCP flags in the initial TCP request.

UDP. UDP scanning differs significantly from TCP scanning. If the attacker addresses an

open UDP port, the victim does not necessarily render a response. However, similar behaviour

can be observed when a firewall blocks the request. If the attacker sends the request to a closed

UDP port, the victim normally responds with an ICMP unreachable message. Often, operating

systems limit the number of ICMP unreachable messages to one per second [21].

In conclusion, observed flow-based network traffic varies significantly for different port

scan techniques. The identification of victims seems to be easier than the identification of

attackers since victims follow protocol rules and attackers vary their behaviour to trick security

mechanisms. Further, port scan requests to closed ports seem to be easier to detect than those

to open ports due to the abnormal behaviour of the victim.

Flow-based data

Flow-based data provide meta information about network connections between endpoint

devices and can be easily captured at network devices like switches. Claise [22] defines a flow

as a sequence of packets with some common properties that pass through a network device.

Traditionally, all packets which share the properties Source IP Address, Source Port, Destination
IP Address, Destination Port and Transport Protocol are aggregated into one flow [23]. We use

flows in NetFlow [22] format which follows this aggregation strategy. Port scans primarily aim

at the identification of open ports on a specific host or at detecting various hosts with a specific

open port. Since Destination IP Address and Destination Port are aggregation properties, a port

scan causes a separate flow for each targeted host or targeted port.

Flows appear either in unidirectional or bidirectional format. Unidirectional flows

represent a summary of all packets from host A to host B which share the same properties.

The packets from host B to host A are aggregated in another unidirectional flow. In

contrast, one bidirectional flow encompasses a summary of both, the transmitted packets

from host A to host B as well as from host B to host A. Bidirectional flows contain more

information but asymmetric routing in company backbones could distort the information

in bidirectional flows [24]. Therefore, this work uses unidirectional flows in NetFlow [22]

format.

NetFlow has an active and an inactive timeout for flows. The inactive timeout terminates

a flow if no further packets are received within α seconds. The active timeout terminates a

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0204507

flow if it has been open for more than β seconds. By default, NetFlow uses the values α = 15

and β = 1800.

Table 1 shows typical attributes in unidirectional flow-based data.

Detection approaches

In this section, we introduce our two approaches for detecting (slow) port scans. First, we pro-

pose the common idea of both approaches. Then, we present our novel preprocessing chain of

flow-based data which results in the generation of network events tailored for port scan detec-

tion. Finally, we describe our two port scan detection methods UPDS (Unsupervised Port Scan

Detection) and SPDS (Supervised Port Scan Detection).

Outline of the proposed approaches

Fig 1 provides an overview of the proposed approaches and illustrates the general workflow.

Starting point of both approaches is the unbounded flow-based data stream which is

received from network devices like firewalls, routers or switches. In the first step, we use addi-

tional knowledge about the network structure to enrich the flow-based data stream with addi-

tional information. We tag the information if a Source (Destination) IP Address is internal or

external to each flow. For this purpose, a so called network information file is required which

needs to be set up by a domain expert and should contain all IP subnet addresses of the com-

pany network. After that, we collect the flows over time windows in the second preprocessing

step. This helps us to confront the challenge that a port scan is characterized by sequences of

flows and not by a single flow. The result of the second step is the generation of network events.
These network events are used as input objects for our two port scan detection approaches.

The first approach UPSD is unsupervised and uses sequential hypothesis testing. The second

approach is supervised and uses classification algorithms. Both approaches process the incom-

ing network events in real-time and depending on their results, port scan alerts are generated

or not.

Preprocessing of flow-based data

Our preprocessing chain (Step 1 and Step 2 in Fig 1) results in the generation of network
events. Therefore, we collect all incoming flows within a time window of δ seconds. Then, we

calculate for each Source IP Address in each time window one network event based on these col-

lections. These network events are used as input values for our detection algorithms UPSD and

SPSD.

Table 1. Typical attributes in flow-based data like NetFlow [22] or IPFIX [23].

Attribute Description

1 Src IP Source IP Address

2 Src Port Source Port

3 Dest IP Destination IP Address

4 Dest Port Destination Port

5 Proto Transport Protocol (e.g. ICMP, TCP, or UDP)

6 Date first seen Start time flow first seen

7 Duration Duration of the flow

8 Bytes Number of transmitted bytes

9 Packets Number of transmitted packets

10 Flags OR concatenation of all TCP flags

https://doi.org/10.1371/journal.pone.0204507.t001

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0204507.t001
https://doi.org/10.1371/journal.pone.0204507

Generation of network events. Attackers use port scans to collect information about a

network. Their goal is to learn about open ports which they can exploit in succeeding steps.

Consequently, it is more likely for attackers to address closed ports or non-existing IP
Addresses than for legitimate clients when scanning the whole network for open ports. We use

this heuristic to build network events with appropriate attributes for port scan detection. Fur-

ther, we exploit additional knowledge about the network structure. More specifically, we store

all internal IP Addresses and any known open TCP port for internal IP Addresses. The latter is

achieved by recording any combination of Source IP Address and Source Port (between 0 and

1024) for which a valid TCP connection could be observed. Table 2 provides a summary of the

calculated attributes for network events.
Example. In the following, we want to explain the attributes of network events through an

example (see Tables 3 and 4). Table 3 shows the known internal IP Addresses and known open

TCP ports. Table 4 provides an overview of the captured flows within an exemplary time win-

dow. The first attribute of the network event is the IP Address of the host. The IP Address is

only used to identify the source of port scans and is not considered by further analysis

methods. In our example, we want to create a network event for the host with the IP Address

192.168.220.16.A unique combination of Destination IP Address and Destination Port is called

a target.
The attributes 2 and 3 for network events (see Table 2) consider the identified behaviour of

victims (see Section Analysis of Port Scans). The attribute ICMP-Error count contains the

Fig 1. Proposed workflow for the detection of slow port scans.

https://doi.org/10.1371/journal.pone.0204507.g001

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0204507.g001
https://doi.org/10.1371/journal.pone.0204507

number of received ICMP unreachable flows and is an indicator for UDP scans. For our exam-

ple, the value of ICMP-Error count is 2, since the IP Address 192.168.220.16 receives two ICMP

unreachable messages (see flow number #18 and #20) in Table 4.

Similarly, the attribute RST count is an indicator for TCP scans. If an attacker addresses a

closed TCP Port, the victim normally sends a RST flag as response. The attribute RST count

Table 3. The table delineates known internal IP Addresses and known open TCP ports for the exemplary network.

Known internal IP Addresses Known open TCP ports

192.168.100.5 192.168.100.5 Port 80

192.168.100.6 192.168.100.6 Port 22

192.168.100.15 192.168.100.5 Port 443

192.168.220.16

https://doi.org/10.1371/journal.pone.0204507.t003

Table 2. Attributes within a network event.

Name Description

1 IP IP Address

2 ICMP-Error

count

The number of received ICMP Errors

3 RST count The number of received RST flags from different targets
4 RwA count The number of addressed targets without response

5 NeIP count The number of flows to non-existing internal IP Addresses

6 NeTCP count The number of flows to non-existing internal TCP-Services

7 Succession count Counts how often this IP Address had a value greater than 0 in one the other attributes in

succession

https://doi.org/10.1371/journal.pone.0204507.t002

Table 4. The table contains the collected flows for a specific time window for the exemplary network.

Proto SrcIP SrcPt DstIP DstPt TCP flags

1 TCP 192.168.100.5 80 192.168.220.16 53321 .A....

2 TCP 192.168.220.16 53333 192.168.100.5 80 .A..S.

3 TCP 192.168.100.5 80 192.168.220.16 53333 .A..S.

4 TCP 8.8.8.8 80 192.168.220.16 47898 ...R..

5 TCP 192.168.100.5 80 192.168.220.16 53333 ...R..

6 TCP 192.168.100.5 80 192.168.220.16 53321 ...R..

7 TCP 192.168.220.16 53337 192.168.100.5 22S.

8 TCP 192.168.220.16 53338 192.168.100.5 22S.

9 TCP 192.168.220.16 53339 192.168.100.5 23S.

10 TCP 192.168.100.5 22 192.168.220.16 53337 ...R..

11 TCP 192.168.100.5 22 192.168.220.16 53338 ...R..

12 TCP 192.168.100.5 23 192.168.220.16 53339 ...R..

13 TCP 192.168.220.16 53340 192.168.100.15 443S.

14 TCP 192.168.220.16 53341 192.168.100.15 443S.

15 TCP 192.168.220.16 53342 192.168.100.15 443S.

16 TCP 192.168.220.16 53343 192.168.100.15 22S.

17 ICMP 192.168.220.16 0 192.168.220.44 8.0

18 ICMP 192.168.220.1 0 192.168.220.16 3.1

19 UDP 192.168.220.16 34345 192.168.100.5 53

20 ICMP 192.168.100.5 0 192.168.220.16 3.3

https://doi.org/10.1371/journal.pone.0204507.t004

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0204507.t003
https://doi.org/10.1371/journal.pone.0204507.t002
https://doi.org/10.1371/journal.pone.0204507.t004
https://doi.org/10.1371/journal.pone.0204507

tries to measure this behaviour. However, RST flags are also used to cancel existing connec-

tions. Therefore, we only consider flows with received RST flags from different targets for

which a previous request and no established connection could be observed. The value of RST
count in our example is 2 (flows #10, #11 and #12). Flows #10 and #11 only count as one,

since they are received from the same target. There is no request from 192.168.220.16 to

8.8.8.8. Therefore, the RST flag of flow #4 is not considered. The RST flags of flows #5 and #6

are also not counted since an open connection for these flows can be observed (see flows #1

and #3).

Often firewalls and other security mechanisms block probe packets of attackers. In these

cases, we can observe a unidirectional flow from the attacker to the victim even if the probe

packets never reach their targets. In consequence, the victim does not return a response and,

hence, no corresponding unidirectional flow from the victim to the attacker can be observed,

which is reflected in the fourth attribute, RwA count. This attribute contains the number of

flows without corresponding flows in the opposite direction. Flows with multicast or broadcast

addresses in the attribute Destination IP Address are excluded by this counter. Multiple unidi-

rectional flows to the same target without corresponding counterpart in the opposite direction

are only counted once. The value of RwA count is 4 in our example. Here, we count the flows

#13, #14, #15, #16, #17 and #19. However, the flows #13, #14, #15 have the same target and are

only counted once.

As already mentioned above, it is more likely for attackers to address closed ports or non-

existing IP Addresses than for legitimate clients. The attributes 5 and 6 try to consider these

facts. The fifth attribute NeIP count contains the number of requested non-existing internal

Destination IP Addresses. In our example, all IP Addresses with 192.168.X.X are internal. Conse-

quently, the value of NeIP count is 1 (flow #17).

Further, we store all known open TCP ports for internal hosts. The attribute NeTCP count
contains the number of flows to different targets which address non open known TCP ports

on internal hosts. In our example, the attribute NeTCP count has the value 3 (flows #7, #8, #9

and #16). Flows #7 and #8 together only count once.

For detecting slow port scans, we use the following approach. The attributes ICMP-Error
count, RST count, RwA count, NeIP count and NeTCP count are indicators for port scans. If all

indicator attributes are zero, we set the value of attribute Succession count to 0. Otherwise, we

distinguish the following two cases: (1) The value of the attribute Succession count for this IP
Address was zero in the previous time window. In this case, we set the value of the attribute

Succession count to 1. (2) The value of the attribute Succession count for this IP Address had

value v in the previous time window. In this case, Succession count will be set to v + 1. Conse-

quently, the attribute Succession count contains the information how often the IP Address has a

value greater than 0 in any indicator attribute in succession. This heuristic is based on the

assumption that badly configured clients may exceed the threshold for a short period, but only

port scanners do so over longer periods.

UPSD—Unsupervised port scan detection

In the unsupervised UPSD approach, we transfer Jung’s idea of sequential hypothesis testing

[16] for port scan detection to our network events outlined in the previous section.

Sequential hypothesis testing updates a likelihood variable with a given stream of events

in order to assign this stream to one of two possible sets H0 or H1. In our scenario, the stream

of events consists of network events from the same Source IP Address. Further, the set H0 con-

tains the normal hosts and the set of port scanners is described by H1. Each network event is

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0204507

represented as an indicator variable Yi:

Yi ¼

(
0 if network event i is sucessful

1 if network event i is not sucessful
; ð1Þ

Therefore, we have to define if a network event is successful or not successful. Since our pri-

mary goal is a low number of false alarms when detecting slow port scans, we choose only

strong indicators for port scans from Table 2. We experimentally observed that the attributes

RST count and RwA count have often values greater than 0 for normal network traffic. One rea-

son for this observation is the processing of the data stream which divides the data stream into

fixed time windows. Let us assume, the unidirectional flow from host A to host B appears in

time window t and unidirectional flow from host B to host A (response) appears in time win-

dow t + 1. Consequently, the attribute RwA count would be 1 for host A in time window t and

1 for host B in time window t + 1. For this reason, we only consider the attributes ICMP-Error
count, NeIP count and NeTCP count. We compute the sum α of these three attributes. If α is 0,

the network event is successful, otherwise it is not successful. Since sequential hypothesis test-

ing considers times series from scratch, it makes no sense to consider the attribute Succession
count.

Further, there are four probabilities attached to the indicator variable Yi:

Pr½Yi ¼ 0jH0� ¼ y0 ð2Þ

Pr½Yi ¼ 1jH0� ¼ 1 � y0 ð3Þ

Pr½Yi ¼ 0jH1� ¼ y1 ð4Þ

Pr½Yi ¼ 1jH1� ¼ 1 � y1 ð5Þ

Eqs 2, 3, 4 and 5 describe the probabilities that an event is successful (or not successful) on

condition that it belongs to the set H0 (or H1). It is important to note that there must be a sig-

nificant difference between the statistical behaviour of H0 and H1. For example, the set of nor-

mal hosts H0 should have more successful network events than the set of port scanners H1. The

probabilities θ0 and θ1 are user-defined input parameters. For each incoming network event,
the sequential hypothesis testing updates the likelihood ratio of the corresponding Source IP
Address as follows:

ratiosrcIPi ¼ ratiosrcIPi� 1
� ai �

Pr½Yi ¼ gjH1�

Pr½Yi ¼ gjH0�
ð6Þ

where γ is 0 for successful network events and 1 for not successful network events. The variable

αi is the sum of the attributes ICMP-Error count, NeIP count and NeTCP count from the recent

network event i. If αi is 0 (successful network event), we set the value of αi to 1 in order to pre-

vent a multiplication by 0.

After updating the ratio, we check it against two thresholds η0 and η1. If ratiosrcIPi exceeds

any of the two thresholds, the Source IP Address will be labelled with the corresponding class

and the ratio of this Source IP Address is reset to 1. If ratiosrcIP
i < Z0, then the Source IP Address

could be assigned to H0 (normal host). If ratiosrcIPi > Z1, then the Source IP Address could be

assigned to H1 (scanner). In this case, UPSD raises an alert that the Source IP Address is a port

scanner.

Algorithm 1 shows the pseudo code of UPSD.

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0204507

Algorithm 1: Unsupervised algorithm UPSD for detecting slow port scans.
srcIPRatios // HashMap for storing the ratios
while end of network event stream is not reached do
event = read next network event
ip = event.srcIP
If ip not in srcIPRatios then
srcIPRatios.add(ip, 1.0)

end
ratio = srcIPRatios.get(ip)
αi = event.ICMP-Error_count+event.NeIP_count+event.NeTCP_count
if αi > 0 then

ratio ¼ ratio � ai �
1� y1

1� y0

else
ratio ¼ ratio � 1 �

y1

y0

end
srcIPRatios.put(ip, ratio)
If ratio > η1 then
mark ip as scanner
srcIPRatios.put(ip, 1.0)

end
If ratio < η0 then
mark ip as normal
srcIPRatios.put(ip, 1.0)

end
end

SPSD—Supervised port scan detection

Our supervised SPSD approach is based on classification algorithms. To be precise, we use Sup-
port Vector Machines (SVM) and Decision Trees. Generally, classification algorithms are used

to assign objects to different predefined groups (classes). The process of classification consists

of two steps. In the first step, the classification algorithm is trained with a labelled set of train-

ing objects. Each training object contains a label indicating the class the object belongs to. The

classification algorithm learns the characteristics of the different classes and builds a model or

function for the assignment (classification) of new or unlabelled objects. In the second step,

the classification algorithm uses this model or function to classify unseen objects [25]. The net-
work events are the input objects in our port scan scenario and we have two classes: normal
and attack. We use the attributes #2, #3, #4, #5, #6 and #7 (see Table 2) of network events for

training the classification algorithms. After training the classification algorithm, we use it to

classify unseen network events. If a network events is assigned to the class attack, SPSD raises an

alert that the corresponding Source IP Address is a port scanner.

Decision tree. A decision tree builds a tree to classify input objects and has three basic ele-

ments. Every inner node checks the value of an attribute. The edges of the inner nodes repre-

sent the possible results of the attribute check. Depending on the attribute values, a certain

path is followed until a leaf node is reached. The leaf nodes assign class labels to objects and do

not perform further comparisons.

In the training phase, the decision tree is learnt from the data. Starting at the root node, an

attribute is assigned to the node. The algorithm selects the attribute which optimizes an evalua-

tion function. For every possible attribute value, a child node is created and the training objects

are separated into sets according to their value of this particular attribute. This process is

repeated for each child node, until all training objects belong to the same class or until all attri-

butes have already been assigned to inner nodes on this path. Normally, a pruning step is

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0204507

performed after the decision tree has been created. Pruning reduces the complexity of the tree

by removing unnecessary branches and improves classification accuracy [26].

Support vector machines. SVMs are binary classifiers for linear and non-linear data

which classify input objects into two different classes. Often, SVMs use a kernel function

which transforms the input data to a higher-dimensional space, the so-called feature space. In

this features space, SVMs search for the optimal hyperplane which separates the input objects

with respect to their classes. The optimal hyperplane maximizes the distance to the nearest

objects on both sides.

In the classification phase, a SVM maps the new input objects to the feature space and uses

the identified hyperplane to classify them [26].

Experiments and discussion

This section presents an experimental evaluation of our proposed port scan detection

approaches (UPSD and SPSD) on the flow-based CIDDS-001 data set [27]. We compare our

approaches with the widespread flow-based port scan detection algorithms TRW-SYN [17]

and TFDS [18]. Further, we use an adjusted version of Webster et al. [20] as third baseline

since it seems to be the most similar approach to our work.

Evaluation data set

We use the CIDDS-001 (https://www.hs-coburg.de/cidds) [27] data set for evaluation. In the

CIDDS-001 data set, a small business environment was rebuilt using the software platform

OpenStack and the generated network traffic was captured in unidirectional NetFlow format.

The small business environment contains about 20 clients and typical servers like File-Server
and Email-Server. The user behaviour of the clients is simulated by scripts which execute typi-

cal user activities on the clients. The scripts take restrictions such as working hours and differ-

ent working styles into account in order to generate network traffic that is as realistic as

possible. Further, the authors executed several attacks within the network and labelled all

flows.

The CIDDS-001 [27] data set consists of two parts. One part contains the flow-based net-

work traffic within the OpenStack environment. The other part contains flow-based network

traffic observed at an external server in the internet. In this work, we use only the OpenStack
part of the data set. This part contains 4 weeks of network traffic where the first two weeks con-

tain several attacks and the last two weeks are free of attacks. For our experiments, we use the

first two weeks of this data set and refer to them as week1 and week2.

We edited the data set as follows. At first, we filtered out all attacks except scanning attacks.

The remaining data set contains only normal traffic and scanning attacks. The flows can be

distinguished in three classes: attacker, victim and normal. Since we are only interested in iden-

tifying attackers, we changed the label victim to normal for all flows. The resulting data set con-

tains more than 15 millions flows which can be distinguished in normal and attacker. Table 5

provides an overview of the executed port scans within this data set.

Table 5. Port scans within the CIDDS-001 data set.

Parameter week1 week2

T = 1 7 6

T = 2 10 7

T = 3 9 1

Sum 26 14

https://doi.org/10.1371/journal.pone.0204507.t005

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 12 / 18

https://www.hs-coburg.de/cidds
https://doi.org/10.1371/journal.pone.0204507.t005
https://doi.org/10.1371/journal.pone.0204507

The authors of [27] used the tool nmap for the execution of port scans within the CIDDS-

001 data set. Table 5 shows that there are 26 port scans in week1 and 14 port scans in week2.

The parameter T controls the timing behaviour of the port scans: the higher the value of T, the

faster the port scan. A port scan with parameter T = 1 sends a probe packet every 15 seconds

whereas a port scan with parameter T = 2 sends a probe packet every 0.4 seconds [21].

Other existing labelled data sets like ISCX [28] or MAWI repository [29] are not suitable for

our evaluation setting. The MAWI repository [29] publishes up-to-date packet-based data sets

which are captured at an internet backbone. Using these data sets would destroy the funda-

mental idea of the proposed approaches since it would be impossible to integrate additional

knowledge about the network structure. In contrast to that, the flow-based data set ISCX [28]

does not focus on port scans, but rather on various other types of attacks such as (Distributed)
Denial of Service. Thus, it cannot serve as a reasonable baseline for our purpose.

Evaluation methodology

We use the number of recognized scanning attacks and the number of false alarms as evalula-

tion measures.

TRW-SYN processes each flow separately and assigns each flow to the class normal or

attacker. TFDS, Webster, UPSD and SPSD collect flows over time windows and assign each col-

lection to the class normal or attacker. Due to this collection procedure, some collections can

contain normal and attacker flows (we refer to them as mixed collections in the following).

Mixed collections can not be uniquley assigned to the class normal or attacker. Consequently,

we have to use additional rules for labelling mixed collections. In this work, we assign each

mixed collection to the class attacker. Therefore, the classification accuarcy would not be a fair

evaluation measure, since not all approaches (TRW-SYN) use this additional labelling rule. For

this reason, we do not use the classification accuracy as additional evaluation measure.

Parameter setting

This section provides information about the parameters settings of the different approaches.

Further, it should be considered that our approach SPSD and the work of Webster are super-

vised methods which need labelled data in the training phase. In contrast to that, TRW-SYN,

TFDS and UPSD are unsupervised methods which do not need labelled data in the training

phase.

TRW-SYN. TRW-SYN is controlled by four user-defined input parameters. We evaluate

TRW-SYN with two different parameter settings. First, we use the parameter from [17] and

refer to them as TRW-SYN (default): η1 = 99, η0 = 0.01, θ1 = 0.2, and θ0 = 0.8. Then, we empiri-

cally optimized the parameters for week1 of the CIDDS-001 data set. We refer to this parame-

ter setting as TRW-SYN (optimized): η1 = 99999, η0 = 0.0001, θ1 = 0.3, and θ0 = 0.6.

TFDS. TFDS needs the input of seven user-defined parameters. Here, we also evaluate

two different parameter settings. First, we use the parameter from [18] as default parameter

TFDS (default): η1 = 256, Z0 ¼
1

256
, θ1 = 0.2, θ0 = 0.8, c = 10, α = 0.1 and t = 20. Second, we

empirically optimized the parameters for week1 of the CIDDS-001 data set. We refer to

this parameter setting as TFDS (optimized): η1 = 10000, Z0 ¼
1

10000
, θ1 = 0.25, θ0 = 0.75, c = 10,

α = 0.15 and t = 40.

UPSD. UPSD collects all incoming flows within a δ second time window and calculates

for each Source IP Address within this time window one network event. We set the parameter

δ = 60 for the calculation of time windows.

Further, this approach needs like TRW-SYN four user-defined input parameters. We con-

figured the parameter such that we detect the maximum number of port scans in week1 of the

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 13 / 18

https://doi.org/10.1371/journal.pone.0204507

CIDDS-001 data set. We refer this setting as UPSD (maxDect): η1 = 99, η0 = 0.01, θ1 = 0.2,

and θ0 = 0.8. Then, we tried to reduce the number of false alarms for week1. We refer this set-

ting as UPSD (minFP) and used the following configuration: η1 = 999, η0 = 0.001, θ1 = 0.2, and

θ0 = 0.8.

SPSD. Similar to UPSD, we set the window parameter δ = 60 for the calculation of time

windows. Then, we use Decision Tree and SVM classifiers for the identification of port scans.

These classifiers have to be trained with labelled training data before they can be used to clas-

sify new network events. Therefore, we trained the classifiers on week1 to classify week2 and

vice versa. All continuous attributes of network events are normalized through scaling to the

interval [0, 1]. Both classification algorithms have some configurable parameters. For SVM, we

used a RBF kernel with parameters C = 10000 and γ = 1.0. For Decision Tree, we used the GINI
index as split criterion.

Webster. Webster et al. [20] collect the flows for each Source IP Address and calculate

aggregations with additional attributes. The authors apply an attribute selection algorithm and

discretize all attributes. Based on these preprocessing steps, the authors evaluate the perfor-

mance of different classification algorithms. For defining the third baseline—which we call

Webster -, we calculate the same attributes as [20], use the Random Forest classifier which

obtained the best results in [20] and set the parameter lower bound to 1. However, we make an

adjustment for our evaluation. Webster et al. [20] collected the flows for each Source IP Address
over the complete data set. As we try to detect port scans in (nearly) real time, it would not be

appropriate to collect the flows of a Source IP Address over the complete data set. Hence we

split the data stream in time windows of 60 seconds (like for USPSD and SPSD) and calculate

one aggregation for each Source IP Address within each time window. Similar to SPSD, we

train the Random Forest classifier on week1 to classify week2 and vice versa.

Results

Table 6 shows the detection rate and false alarms of UPSD, SPSD, TRW-SYN, TFDS and Web-
ster on the CIDDS-001 data set.

TFDS has the lowest detection rate of port scans. We are able to increase the detection rate

and simultaneously decrease the false alarm rate through parameter optimization for TFDS.

However, it only detects 9 out of 26 attacks in week1 and 4 out of 14 in week2. In contrast to

that, TRW-SYN is able to detect more port scans than TFDS. We are able to reduce the number

of false alarms significantly by customizing the user input parameters. However, this approach

still generates the most false alarms. Depending on the parameter configuration, UPSD is able

Table 6. Results of the experiment. The table shows the number of detected port scans as well as the number of false alarms for the different algorithms in week1 and

week2. Week1 contains 26 port scans and week2 contains 14 port scans.

Approach week1 week2

Detected attacks False alarms Detected attacks False alarms

TFDS (default) 6 35 2 16

TFDS (optimized) 9 29 4 8

TRW-SYN (default) 15 1685 8 7495

TRW-SYN (optimized) 14 78 7 118

UPSD maxDect 26 1 14 2

UPSD minFP 25 0 14 0

SPSD with DecisionTree 26 0 14 8

SPSD with SVM 26 0 14 0

Webster 26 22 14 6

https://doi.org/10.1371/journal.pone.0204507.t006

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 14 / 18

https://doi.org/10.1371/journal.pone.0204507.t006
https://doi.org/10.1371/journal.pone.0204507

to recognize all port scans (UPSD (maxDect)) or to generate no false alarms (UPSDminFP).

The proposed supervised approach SPSD is able to detect all 26 port scans in week1 and all 14

port scans in week2. Further, SPSD with SVM has no false alarms for both weeks. While the

other supervised algorithm Webster is able to detect all port scans in week1 and week2, it gener-

ates in contrast to SPSD a larger number of false alarms than SPSD.

Discussion

Table 6 shows that SPSD reaches the best results. It has the highest detection rate (all port

scans were detected) of port scans combined with the lowest rate of false alarms. We used Deci-
sion Tree and SVM classifiers as detection algorithms. Both classification algorithms have their

advantages. Decision Trees build classification models which are human readable. Each path

from the root node to a leaf node defines a classification rule. In comparison to that, the SVM
classifier achieves the lowest rate of false alarms.

The supervised approach Webster is also able to detect all port scans for week1 and week2.

However, it generates a higher number of false alarms than SPSD and UPSD.

Our unsupervised approach UPSD reaches the second best result. For the first parameter

setting (see UPSD (maxDect) in Table 6) it is able to recognize all attacks along with a low false

alarm rate (1 false alarm in week1 and 2 false alarms in week2). For the second parameter set-

ting (see UPSD (minFP) in Table 6) it is able to generate no false alarms and simultaneously

detect 25 of 26 port scans in week1 and all port scans in week2.

TRW-SYN is limited to the detection of TCP SYN scans only. Since the CIDDS-001 data

set also contains other types of port scans, the detection rate of this approach is lower than the

detection rate of the proposed approaches. Further, the flows in the CIDDS-001 data set are

captured with OpenVSwitch. OpenVSwitch has an inactive timeout of 1 or 2 seconds for flow

generation (depending on the version of OpenVSwitch). In comparison to that, the default

inactive timeout of NetFlow in real hardware devices is 15 seconds. The shorter inactive time-

out of the flows within CIDDS-001 data set may lead to more failed connections for TRW-SYN.

Therefore, we tried to customize the parameters of this approach to reduce the effect of failed
connections (see TRW-SYN (optimized) in Table 6). Through this parameter tuning, we were

able to reduce the number of false alarms enourmouly.

TFDS has the lowest detection rate of port scans, see Table 6. A more detailed analysis

showed that TFDSwas not able to detect slow port scans. Further, it has also problems to detect

port scans from attackers which try to cover their traces. For example, TFDS is not able to

detect the port scans when the attacker simultaneously performs legal activities like surfing the

web.

Overall, SPSD has the highest detection rate combined with the lowest rate of false alarms.

Further, SPSD is not limited to some types of TCP Scans like TRW-SYN, instead it is able to

detect various types of slow port scans. However, SPSD needs like Webster correctly labelled

training data to learn a classification model. Such data sets are rare, but can be generated by

manual labelling or simulation (see e.g. [27, 28], or [30]). In contrast to that, UPSD reaches

nearly the same results and does not need any training data. Instead, this approach has some

user-defined parameters which must be tuned manually. The same holds for TRW-SYN and

TFDS. However, these approaches have lower detection rates and more false alarms compared

to the proposed UPSD approach.

Conclusion

Attacks against company networks often pass the typical attack phases: Reconnaissance, Scan-
ning, Gaining Access, Maintaining Access and Covering Tracks. Normally, attackers use port

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 15 / 18

https://doi.org/10.1371/journal.pone.0204507

scans in the preliminary Scanning phase to gather information about their targets. For those

reasons, recognition of port scans can be an early indicator for future attacks. However, the

detection of slow port scans is challenging due to the large amount of network traffic in com-

pany networks.

In this paper, we propose two approaches for detecting slow port scans within flow-based

network data. Both approaches use the same innovative preprocessing chain which is also the

main contribution of this work. This preprocessing chain collects for each host flow-based net-

work traffic over time windows and enriches the flows with additional information about the

network structure (e.g. is the Source IP Address internal or external). Then, the enriched and

collected flows are used to calculate new objects—which we called network events—with appro-

priate attributes for port scan detection. These network events are used as input for our detec-

tion approaches: UPSD (Unsupervised Port Scan Detection) and SPSD (Supervised Port Scan

Detection). UPSD uses sequential hypotheses testing whereas SPSD is based on classification

algorithms. Both approaches reduce the amount of data due to the transformation of flows to

network events which simultaneously minimizes the analysis effort for security experts.

We evaluated our approaches experimentally on the CIDDS-001 data set. The results indi-

cate that both approaches are able to detect slow port scans with a very low false alarm rate. In

the future, we intend to expand the evaluation of the proposed approaches with real world net-

work data and upcoming evaluation data sets. Further, we want to investigate the usage of

additional domain knowledge in other attack phases.

Acknowledgments

This work is funded by the Bavarian Ministry for Economic affairs through the WISENT proj-

ect (grant no. IUK 452/002). M.R. was supported by the BayWISS Consortium Digitization.

Author Contributions

Conceptualization: Markus Ring, Dieter Landes, Andreas Hotho.

Data curation: Markus Ring.

Investigation: Markus Ring.

Methodology: Markus Ring.

Supervision: Dieter Landes, Andreas Hotho.

Writing – original draft: Markus Ring.

Writing – review & editing: Dieter Landes, Andreas Hotho.

References
1. Landes D, Otto F, Schumann S, Schlottke F. Identifying Suspicious Activities in Company Networks

Through Data Mining and Visualization. In: Rausch P, Sheta AF, Ayesh A, editors. Business Intelligence

and Performance Management. Springer; 2013. p. 75–90.

2. Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A. A Toolset for Intrusion and Insider Threat Detec-

tion. In: Palomares I, Kalutarage H, Huang Y, editors. Data Analytics and Decision Support for Cyberse-

curity: Trends, Methodologies and Applications. Springer; 2017. p. 3–31.

3. Skoudis E, Liston T. Counter Hack Reloaded: A Step-by-step Guide to Computer Attacks and Effective

Defenses. Prentice Hall Series in Computer Networking and Distributed Systems. Prentice Hall Profes-

sional Technical Reference; 2006.

4. Dua S, Du X. Data mining and machine learning in cybersecurity. CRC press; 2016.

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 16 / 18

https://doi.org/10.1371/journal.pone.0204507

5. Bhuyan MH, Bhattacharyya DK, Kalita JK. Network Anomaly Detection: Methods, Systems and Tools.

IEEE Communications Surveys & Tutorials. 2014; 16(1):303–336. https://doi.org/10.1109/SURV.2013.

052213.00046

6. Buczak AL, Guven E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intru-

sion Detection. IEEE Communications Surveys & Tutorials. 2016; 18(2):1153–1176. https://doi.org/10.

1109/COMST.2015.2494502

7. Sommer R, Paxson V. Outside the closed world: On using machine learning for network intrusion detec-

tion. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy. IEEE; 2010. p. 305–316.

8. Ring M, Landes D, Dallmann A, Hotho A. IP2Vec: Learning Similarities between IP Adresses. In: Pro-

ceedings Workshop on Data Mining for Cyber Security (DMCS), International Conference on Data Min-

ing. IEEE; 2017. p. 657–666.

9. Weller-Fahy DJ, Borghetti BJ, Sodemann AA. A survey of distance and similarity measures used within

network intrusion anomaly detection. IEEE Communications Surveys & Tutorials. 2015; 17(1):70–91.

https://doi.org/10.1109/COMST.2014.2336610

10. AlEroud AF, Karabatis G. Queryable Semantics to Detect Cyber-Attacks: A Flow-Based Detection

Approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018; 48(2):207–223.

https://doi.org/10.1109/TSMC.2016.2600405

11. Nychis G, Sekar V, Andersen DG, Kim H, Zhang H. An empirical evaluation of entropy-based traffic

anomaly detection. In: ACM SIGCOMM Conference on Internet measurement. ACM; 2008. p. 151–

156.

12. Garcia S, Grill M, Stiborek J, Zunino A. An empirical comparison of botnet detection methods. Comput-

ers & Security. 2014; 45:100–123. https://doi.org/10.1016/j.cose.2014.05.011

13. Bhuyan MH, Bhattacharyya D, Kalita JK. Surveying port scans and their detection methodologies. The

Computer Journal. 2011; 54(10):1565–1581. https://doi.org/10.1093/comjnl/bxr035

14. Bou-Harb E, Debbabi M, Assi C. Cyber scanning: a comprehensive survey. IEEE Communications Sur-

veys & Tutorials. 2014; 16(3):1496–1519. https://doi.org/10.1109/SURV.2013.102913.00020

15. Staniford S, Hoagland JA, McAlerney JM. Practical automated detection of stealthy portscans. Journal

of Computer Security. 2002; 10(1-2):105–136. https://doi.org/10.3233/JCS-2002-101-205

16. Jung J, Paxson V, Berger AW, Balakrishnan H. Fast portscan detection using sequential hypothesis

testing. In: IEEE Symposium on Security and Privacy. IEEE; 2004. p. 211–225.

17. Sridharan A, Ye T, Bhattacharyya S. Connectionless port scan detection on the backbone. In: IEEE

International Performance Computing and Communications Conference. IEEE; 2006. p. 10–19.

18. Zhang Y, Fang B. A novel approach to scan detection on the backbone. In: Proceedings of 6th Interna-

tional Conference on Information Technology: New Generations, ITNG’09. IEEE; 2009. p. 16–21.

19. Gates C, McNutt JJ, Kadane JB, Kellner MI. Scan detection on very large networks using logistic

regression modeling. In: Proceedings of 11th IEEE Symposium on Computers and Communications,

ISCC’06. IEEE; 2006. p. 402–408.

20. Webster A, Gratian M, Eckenrod R, Patel D, Cukier M. An Improved Method for Anomaly-Based Net-

work Scan Detection. In: International Conference on Security and Privacy in Communication Systems.

Springer; 2015. p. 385–400.

21. Lyon GF. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security

Scanning. USA: Insecure; 2009.

22. Claise B. Cisco Systems NetFlow Services Export Version 9; 2004. RFC 3954.

23. Claise B. Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic

Flow Information; 2008. RFC 5101.

24. John W, Dusi M, Claffy KC. Estimating routing symmetry on single links by passive flow measurements.

In: International Wireless Communications and Mobile Computing Conference. ACM; 2010. p. 473–

478.

25. Bhattacharyya DK, Kalita JK. Network anomaly detection: A machine learning perspective. CRC

Press; 2013.

26. Han J, Pei J, Kamber M. Data mining: concepts and techniques. 3rd ed. Elsevier; 2011.

27. Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A. Flow-based benchmark data sets for intrusion

detection. In: Proceedings of the 16th European Conference on Cyber Warfare and Security. ACPI;

2017. p. 361–369.

28. Shiravi A, Shiravi H, Tavallaee M, Ghorbani AA. Toward developing a systematic approach to generate

benchmark datasets for intrusion detection. Computers & Security. 2012; 31(3):357–374. https://doi.

org/10.1016/j.cose.2011.12.012

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 17 / 18

https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/SURV.2013.052213.00046
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/COMST.2014.2336610
https://doi.org/10.1109/TSMC.2016.2600405
https://doi.org/10.1016/j.cose.2014.05.011
https://doi.org/10.1093/comjnl/bxr035
https://doi.org/10.1109/SURV.2013.102913.00020
https://doi.org/10.3233/JCS-2002-101-205
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1016/j.cose.2011.12.012
https://doi.org/10.1371/journal.pone.0204507

29. Fontugne R, Borgnat P, Abry P, Fukuda K. MAWILab: Combining Diverse Anomaly Detectors for Auto-

mated Anomaly Labeling and Performance Benchmarking. In: ACM CoNEXT’10. ACM; 2010. p. 8:1–

8:12.

30. Ring M, Wunderlich S, Grüdl D, Landes D, Hotho A. Creation of Flow-Based Data Sets for Intrusion

Detection. Journal of Information Warfare. 2017; 16:40–53.

Detection of slow port scans in flow-based network traffic

PLOS ONE | https://doi.org/10.1371/journal.pone.0204507 September 25, 2018 18 / 18

https://doi.org/10.1371/journal.pone.0204507

